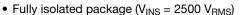

VS-16TTS...FPPbF Series, VS-16TTS...FP-M3 Series

www.vishay.com

Vishay Semiconductors

High Voltage Phase Control Thyristor, 16 A


TO-220AB FULL-PAK

(A)	
9	
\perp	
\blacksquare	
`	٦
Ó	0
1 (K)	(G) 3

PRODUCT SUMMARY				
Package	TO-220FP			
Diode variation	Single SCR			
I _{T(AV)}	10 A			
V_{DRM}/V_{RRM}	800 V, 1200 V			
V_{TM}	1.4 V			
I _{GT}	60 mA			
T_J	- 40 °C to 125 °C			

FEATURES

• Compliant to RoHS Directive 2002/95/EC

• 125 °C max. operating junction temperature

• Halogen-free according to IEC 61249-2-21 definition (-M3 only)

HALOGEN FREE

APPLICATIONS

· Typical usage is in input rectification crowbar (soft start) and AC switch in motor control, UPS, welding, and battery charge

DESCRIPTION

The VS-16TTS..FP... high voltage series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology used has reliable operation up to 125 °C junction temperature.

OUTPUT CURRENT IN TYPICAL APPLICATIONS				
APPLICATIONS	SINGLE-PHASE BRIDGE	THREE-PHASE BRIDGE	UNITS	
Capacitive input filter T _A = 55 °C, T _J = 125 °C, common heatsink of 1 °C/W	13.5	17	А	

MAJOR RATINGS AND CHARACTERISTICS					
PARAMETER TEST CONDITIONS		VALUES	UNITS		
I _{T(AV)}	Sinusoidal waveform	10	٨		
I _{RMS}		16	Α		
V _{DRM} /V _{RRM}		800/1200	V		
I _{TSM}		200	Α		
V _T	10 A, T _J = 25 °C	1.4	V		
dV/dt		500	V/µs		
dl/dt		150	A/µs		
TJ	Range	- 40 to 125	°C		

VOLTAGE RATINGS				
PART NUMBER	V _{RRM} , MAXIMUM PEAK REVERSE VOLTAGE V	V _{DRM} , MAXIMUM PEAK DIRECT VOLTAGE V	I _{RRM} /I _{DRM} AT 125 °C mA	
VS-16TTS08FPPbF, VS-16TTS08FP-M3	800	800	10	
VS-16TTS12FPPbF, VS-16TTS12FP-M3	1200	1200	10	

VS-16TTS...FPPbF Series, VS-16TTS...FP-M3 Series

www.vishay.com

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES	
PARAMETER	STINIBUL	TEST CONDITIONS	TYP.	MAX.	UNITS
Maximum average on-state current	I _{T(AV)}	$T_C = 95$ °C, 180° conduction, half sine wave		10	
Maximum RMS on-state current	I _{RMS}		1	16	A
Maximum peak, one-cycle,	ı	10 ms sine pulse, rated V _{RRM} applied	1	70	A
non-repetitive surge current	I _{TSM}	10 ms sine pulse, no voltage reapplied	2	00	
Marrian	l ² t	10 ms sine pulse, rated V _{RRM} applied	1	44	A2-
Maximum I ² t for fusing	I ² T	10 ms sine pulse, no voltage reapplied		00	- A ² s
Maximum I ² √t for fusing	I ² √t	t = 0.1 to 10 ms, no voltage reapplied	20	000	A²√s
Maximum on-state voltage drop	V_{TM}	10 A, T _J = 25 °C		.4	V
On-state slope resistance	r _t	T 105 °C		4.0	mΩ
Threshold voltage	V _{T(TO)}	T _J = 125 °C	1	.1	V
Marian and disable land	1 /1	T _J = 25 °C	0	.5	
Maximum reverse and direct leakage current	I_{RM}/I_{DM}	$T_J = 125 ^{\circ}\text{C}$ $V_R = \text{Rated } V_{RRM} / V_{DRM}$		10	
Holding current	I _H	Anode supply = 6 V, resistive load, initial I _T = 1 A 16TTS08FP, 16TTS12FP		100	mA
Maximum latching current	ΙL	Anode supply = 6 V, resistive load		00	
Maximum rate of rise of off-state voltage	dV/dt			00	V/µs
Maximum rate of rise of turned-on current	dl/dt	150		50	A/µs

TRIGGERING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum peak gate power	P_{GM}		8.0	w	
Maximum average gate power	P _{G(AV)}		2.0] ^{vv}	
Maximum peak positive gate current	+ I _{GM}		1.5	Α	
Maximum peak negative gate voltage	- V _{GM}		10	V	
	l _{GT}	Anode supply = 6 V, resistive load, T _J = - 10 °C	90	mA	
Maximum required DC gate current to trigger		Anode supply = 6 V, resistive load, T _J = 25 °C	60		
		Anode supply = 6 V, resistive load, T _J = 125 °C	35		
		Anode supply = 6 V, resistive load, T _J = - 10 °C	3.0		
Maximum required DC gate voltage to trigger	V_{GT}	Anode supply = 6 V, resistive load, T _J = 25 °C	2.0	V	
		Anode supply = 6 V, resistive load, T _J = 125 °C	1.0]	
Maximum DC gate voltage not to trigger	V_{GD}	T = 105 °C V = Botod volus	0.2		
Maximum DC gate current not to trigger	I_{GD}	$T_J = 125 ^{\circ}\text{C}, V_{DRM} = \text{Rated value}$		mA	

SWITCHING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Typical turn-on time	t _{gt}	T _J = 25 °C	0.9	
Typical reverse recovery time	t _{rr}	T,i = 125 °C	4	μs
Typical turn-off time	tq	1J = 125 C	110	

www.vishay.com

Vishay Semiconductors

THERMAL AND MECH	THERMAL AND MECHANICAL SPECIFICATIONS				
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range		T _J , T _{Stg}		- 40 to 125	°C
Maximum thermal resistance, junction to case		R_{thJC}	DC operation	1.5	
Maximum thermal resistance, junction to ambient		R _{thJA}		62	°C/W
Typical thermal resistance, case to heatsink		R_{thCS}	Mounting surface, smooth and greased	1.5	
Approximate weight				2	g
Approximate weight				0.07	OZ.
Mounting torque	minimum			6 (5)	kgf · cm
	maximum			12 (10)	(lbf · in)
Marking device			0 TO 0004D FULL DAY (040/0)	16TTS08FP	
			Case style TO-220AB FULL-PAK (94/V0)	16TTS12FP	

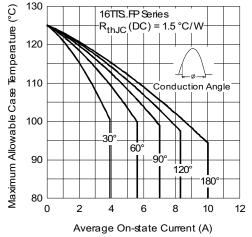


Fig. 1 - Current Rating Characteristics

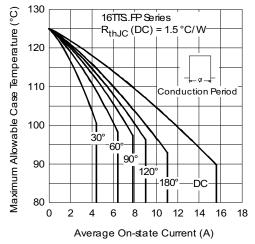


Fig. 2 - Current Rating Characteristics

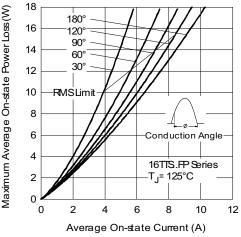


Fig. 3 - On-State Power Loss Characteristics

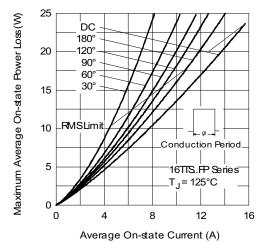


Fig. 4 - On-State Power Loss Characteristics

www.vishay.com

Vishay Semiconductors

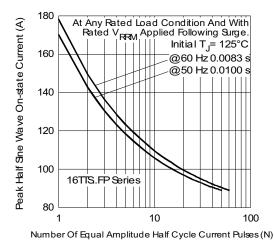


Fig. 5 - Maximum Non-Repetitive Surge Current

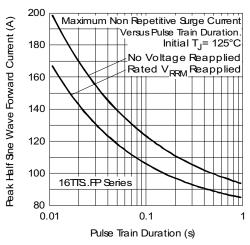


Fig. 6 - Maximum Non-Repetitive Surge Current

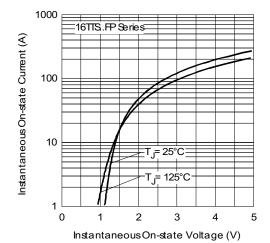


Fig. 7 - On-State Voltage Drop Characteristics

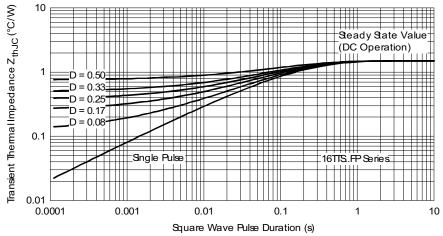
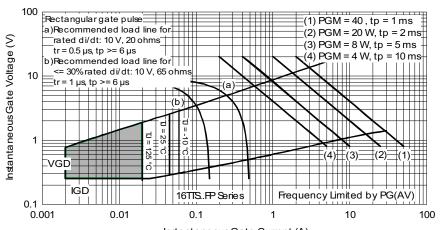



Fig. 8 - Thermal Impedance Z_{thJC} Characteristics

VS-16TTS...FPPbF Series, VS-16TTS...FP-M3 Series

www.vishay.com Vishay Semiconductors

Instantaneous Gate Current (A)
Fig. 9 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Vishay Semiconductors product

2 - Current rating, RMS value

3 - Circuit configuration:

T = Single thyristor

4 - Package:

T = TO-220AB

5 - Type of silicon:

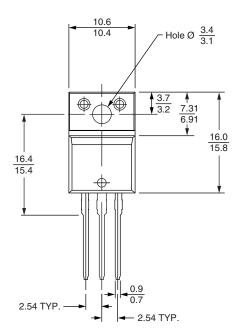
S = Converter grade

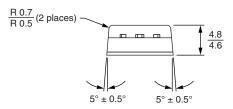
7 - FULL-PAK

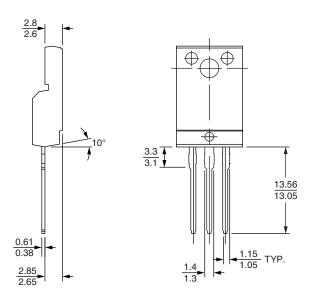
8 - Environmental digit:

PbF = Lead (Pb)-free and RoHS compliant

-M3 = Halogen-free, RoHS compliant, and terminations lead (Pb)-free


ORDERING INFORMATION (Example)					
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION		
VS-16TTS08FPPbF	50	1000	Antistatic plastic tubes		
VS-16TTS08FP-M3	50	1000	Antistatic plastic tubes		
VS-16TTS12FPPbF	50	1000	Antistatic plastic tubes		
VS-16TTS12FP-M3	50	1000	Antistatic plastic tubes		


LINKS TO RELATED DOCUMENTS			
Dimensions <u>www.vishay.com/doc?95072</u>			
Dort marking information	TO-220FP PbF	www.vishay.com/doc?95069	
Part marking information	TO-220FP -M3	www.vishay.com/doc?95456	



Vishay Semiconductors

DIMENSIONS in millimeters

Lead assignments

Diodes

- 1. Anode/open
- 2. Cathode
- 3. Anode

Conforms to JEDEC outline TO-220 FULL-PAK

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.